5.6 Matrix Exponentials and Linear Systems

Fundamental Matrix Solutions
The solution vectors of an $n \times n$ homogeneous linear system

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x} \tag{1}
\end{equation*}
$$

can be used to construct a square matrix $\mathbf{X}=\boldsymbol{\Phi}(t)$ that satisfies the matrix differential equation

$$
\mathbf{X}^{\prime}=\mathbf{A} \mathbf{X}
$$

Then the $n \times n$ matrix

$$
\mathbf{\Phi}(t)=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{x}_{1}(t) & \mathbf{x}_{2}(t) & \cdots & \mathbf{x}_{n}(t) \\
\mid & \mid & & \mid
\end{array}\right]
$$

having these solution vectors as its column vectors, is called a fundamental matrix for the system in (1).
Example 1 Compute the fundamental matrix for the system

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
4 & 2 \\
3 & -1
\end{array}\right] \mathbf{x}
$$

We have $\mathbf{A}=\left[\begin{array}{cc}4 & 2 \\ 3 & -1\end{array}\right]$ with eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=5$ and eigenvectors $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

Thus we have two linearly independent solutions

$$
\mathbf{x}_{1}(t)=\left[\begin{array}{c}
1 \\
-3
\end{array}\right] e^{-2 t}=\left[\begin{array}{c}
e^{-2 t} \\
-3 e^{-2 t}
\end{array}\right] \quad \text { and } \quad \mathbf{x}_{2}(t)=\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{5 t}=\left[\begin{array}{c}
2 e^{5 t} \\
e^{5 t}
\end{array}\right]
$$

The fundamental matrix for the system is

$$
\Phi(t)=\left[\begin{array}{ll}
\vec{x}_{1}(t) & \vec{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
e^{-2 t} & 2 e^{5 t} \\
-3 e^{-2 t} & e^{5 t}
\end{array}\right]
$$

which satisfies the equation of the matrices:

$$
\Phi^{\prime}(t)=\left[\begin{array}{cc}
4 & 2 \\
3 & -1
\end{array}\right] \Phi(t) .
$$

Theorem 1. Fundamental Matrix Solutions
Let $\Phi(t)$ be a fundamental matrix for the homogeneous linear system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$. Then the [unique] solution of the initial value problem

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}_{0} \tag{2}
\end{equation*}
$$

is given by

$$
\begin{equation*}
\mathbf{x}(t)=\boldsymbol{\Phi}(t) \boldsymbol{\Phi}(0)^{-1} \mathbf{x}_{0} \tag{3}
\end{equation*}
$$

In order to apply Eq. (3), we must be able to compute the inverse matrix $\boldsymbol{\Phi}(0)^{-1}$. The inverse of the nonsingular $2 \times 2$ matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is

$$
\mathbf{A}^{-1}=\frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

where $\Delta=\operatorname{det}(\mathbf{A})=a d-b c \neq 0$.

Example 2 In Example 1, we have

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
4 & 2 \\
3 & -1
\end{array}\right] \mathbf{x}
$$

and $\boldsymbol{\Phi}(t)=\left[\begin{array}{cc}e^{-2 t} & 2 e^{5 t} \\ -3 e^{-2 t} & e^{5 t}\end{array}\right]$.
Find a solution satisfying the initial condition $\mathbf{x}_{0}=\mathbf{x}(0)=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
AUS: By Chm 1. we have

$$
\begin{array}{cc}
\vec{x}(t)=\Phi(t) \Phi(0) \vec{x}_{0} & a=1 \\
\Phi(0)=\left[\begin{array}{ll}
e^{-2 \cdot 0} & 2 e^{5 \cdot 0} \\
-3 e^{-2 \cdot 0} & e^{5 \cdot 0}
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-3 & 1
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] & c=-3 \\
d=1
\end{array}
$$

$$
\begin{aligned}
& \vec{x}(t)=\Phi(t) \Phi^{-1}(0) \vec{x}_{0} \\
&=\frac{1}{7}\left[\begin{array}{cc}
e^{-2 t} & 2 e^{5 t} \\
-3 e^{-2 t} & e^{5 t}
\end{array}\right]\left[\left[\begin{array}{ll}
1 & -2 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right) \\
&=\frac{1}{7}\left[\begin{array}{cc}
e^{-2 t} & 2 e^{5 t} \\
-3 e^{-2 t} & e^{5 t}
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right] \\
&=\frac{1}{7}\left[\begin{array}{l}
3 e^{-2 t}+4 e^{5 t} \\
-9 e^{-2 t}+2 e^{5 t}
\end{array}\right] \\
& {\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{7} e^{-2 t}+\frac{4}{7} e^{5 t} \\
-\frac{9}{7} e^{-2 t}+\frac{2}{7} e^{5 t}
\end{array}\right] }
\end{aligned}
$$

## Exponential Matrices

How to construct a fundamental matrix for the system $\mathbf{x}^{\prime}=\mathbf{A x}$ directly from $\mathbf{A}$ ? (without solving for Recall that the solution of $x^{\prime}=a x$ is $x(t)=e^{a t}$.

$$
\text { Since }\left(e^{a t}\right)^{\prime}=a e^{a t}
$$

We now define exponential of matrices in such a way that

$$
\mathbf{X}(t)=e^{\mathbf{A} t}
$$

is a matrix solution of the matrix differential equation

$$
\mathbf{X}^{\prime}=\mathbf{A X}
$$

with $n \times n$ coefficient matrix $\mathbf{A}$, which is an analog to the $x(t)=e^{a t}$ is a solution of the equation $x^{\prime}=a x$.
How do we define $e^{\mathbf{A}}$ ?
In calculus, we have

$$
\begin{aligned}
E g: & e^{2}=1+2+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+\cdots \\
& e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots+\frac{z^{n}}{n!}+\cdots
\end{aligned}
$$

Similarly, we have the following definition.

## Definition Exponential matrix

If A is an $n \times n$ matrix, then the exponential matrix $\mathrm{e}^{\mathbf{A}}$ is the $n \times n$ matrix defined by the series

$$
\begin{equation*}
e^{\mathbf{A}}=\mathbf{I}+\mathbf{A}+\frac{\mathbf{A}^{2}}{2!}+\cdots+\frac{\mathbf{A}^{n}}{n!}+\cdots \tag{4}
\end{equation*}
$$

where $\mathbf{I}$ is the identity matrix.
If $\mathbf{A B}=\mathbf{B} \mathbf{A}$, then $e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}}$

Matrix Exponential Solutions
Theorem 2 Matrix Exponential Solutions
If $\mathbf{A}$ is an $n \times n$ matrix, then the solution of the initial value problem

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

is given by

$$
e^{A t} \text { satisfies }
$$

$$
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}
$$

and this solution is unique. Recall Thm1. $\vec{x}(t)=\Phi H \Phi^{-1}(0) \vec{x}_{0}$
Idea of the proof:

$$
\left(e^{A t}\right)^{\prime}=A e^{A t}
$$

$$
\begin{aligned}
& e^{x^{\prime}}=A x \\
& e^{A t}=\Phi(t) \\
& e^{A \cdot O}=I
\end{aligned}
$$

If we already know a fundamental matrix $\mathbf{\Phi}(t)$ for the linear system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, then

$$
e^{\mathbf{A} t}=\boldsymbol{\Phi}(t) \boldsymbol{\Phi}(0)^{-1}
$$

Example 3 Compute the matrix exponential $e^{\mathbf{A} t}$ for the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ given in the problem.

$$
\begin{gathered}
x_{1}^{\prime}=5 x_{1}-4 x_{2} \\
x_{2}^{\prime}=2 x_{1}-x_{2} \\
-1
\end{gathered} \Leftrightarrow\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
5 & -4 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

ANs: We will use $e^{A t}=\Phi(t) \Phi^{-1}(0)$ to find $e^{A t}$.
We first compute $\Phi(t)$
We solve

$$
\begin{aligned}
& 0=|A-\lambda I|=\left|\begin{array}{cc}
5-\lambda & -4 \\
2 & -1-\lambda
\end{array}\right|=(5-\lambda)(-1-\lambda)+8=\lambda^{2}-4 \lambda+3 \\
& =(\lambda-1)(\lambda-3) \\
& \Rightarrow \lambda_{1}=1 \text { and } \lambda_{2}=3
\end{aligned}
$$

-When $\lambda_{1}=1$, we solve $\left(A-\lambda_{1} I\right) \vec{V}_{1}=\overrightarrow{0}$.

$$
\left[\begin{array}{ll}
4 & -4 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow a-b=0
$$

$$
\vec{V}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

When $\lambda_{2}=3$, then we have

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & -4 \\
2 & -4
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow a-2 b=0} \\
& \vec{V}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{aligned}
$$

Thus $\vec{x}_{1}(t)=\vec{v}_{1} e^{\lambda_{1} t}=\left[\begin{array}{l}e^{t} \\ e^{t}\end{array}\right]$

$$
\vec{x}_{2}(t)=\vec{V}_{2} e^{\lambda_{2} t}=\left[\begin{array}{c}
2 e^{3 t} \\
e^{3 t}
\end{array}\right]
$$

So $\Phi(t)=\left[\begin{array}{ll}\vec{x}_{1}(t) & \vec{x}_{2}(t)\end{array}\right]=\left[\begin{array}{ll}e^{t} & 2 e^{3 t} \\ e^{t} & e^{3 t}\end{array}\right]$

$$
\Phi(0)=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right], \quad \Phi^{-1}(0)=\frac{1}{1-2}\left[\begin{array}{cc}
1 & -2 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right]
$$

$$
e^{A t}=\Phi(t) \Phi^{-1}(0)=\left[\begin{array}{ll}
e^{t} & 2 e^{3 t} \\
e^{t} & e^{3 t}
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
-e^{t}+2 e^{3 t} & 2 e^{t}-2 e^{3 t} \\
-e^{t}+e^{3 t} & 2 e^{t}-e^{3 t}
\end{array}\right]
$$

Remark If $\mathbf{A}^{n}=\mathbf{0}$ for some positive integer $n$, then the exponential series in (4) terminates after a finite number of terms. Such a matrix—with a vanishing power-is said to be nilpotent.

Example 4 Show that the matrix $\mathbf{A}$ is nilpotent and then use this fact to find the matrix exponential $e^{\mathbf{A} t}$.
$\qquad$
ANS: $A^{2}=A \times A=\left[\begin{array}{lll}0 & 3 & 4 \\ 0 & 0 & 6 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}0 & 3 & 4 \\ 0 & 0 & 6 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 18 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

$$
A^{3}=A^{2} \cdot A=\left[\begin{array}{ccc}
0 & 0 & 18 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 3 & 4 \\
0 & 0 & 6 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=0
$$ So $A$ is nilpotent.

Note

$$
\begin{aligned}
e^{A t} & =I+A t+\frac{(A t)^{2}}{2!}+\frac{(A t)^{3}}{3!}+\frac{(A t)^{4}}{4!}+\cdots 00 \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
0 & 3 & 4 \\
0 & 0 & 6 \\
0 & 0 & 0
\end{array}\right] t+\frac{1}{2}\left[\begin{array}{ccc}
0 & 0 & 18 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] t^{2}
\end{aligned}
$$

$$
e^{A t}=\left[\begin{array}{ccc}
1 & 3 t & 4 t+9 t^{2} \\
0 & 1 & 6 t \\
0 & 0 & 1
\end{array}\right]
$$

Example 5 The coefficient matrix $\mathbf{A}$ in the following problem is the sum of a nilpotent matrix and a multiple of the identity matrix. Use this fact to solve the given initial value problem.

$$
\mathrm{x}^{\prime}=\left[\begin{array}{cc}
2 & 5 \\
0 & 2
\end{array}\right] \mathrm{x}, \mathrm{x}, \mathrm{x}(0)=\left[\begin{array}{l}
4 \\
7
\end{array}\right]=\overrightarrow{\mathrm{x}}_{0}
$$

ANS: By Then 2, $\vec{x}(t)=e^{A t} \vec{x}_{0}$

$$
B^{2}=\left[\begin{array}{ll}
0 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 5 \\
0 & 0
\end{array}\right]
$$

$$
A=\left[\begin{array}{ll}
2 & 5 \\
0 & 2
\end{array}\right]=\underbrace{2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}_{\begin{array}{c}
\text { multiple } \\
\text { of the identity } \\
\text { matrix }
\end{array}}+\underbrace{\left[\begin{array}{ll}
0 & 5 \\
0 & 0
\end{array}\right]}_{\text {A nilpolent matrix }}=B \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0
$$ matrix

$$
e^{A t}=e^{(2 I+B) t}=e^{2 I t+B t}=e^{2 I t} e^{B t}(\sin c e I B=B I)
$$

$\mathbf{A B}=\mathbf{B A}$, then $e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}}$

$$
\begin{aligned}
& e^{I t}=I+I t+\frac{z^{\frac{t^{2}}{} t^{2}}}{2!}+\frac{Z^{z^{I} t^{3}}}{3!}+\cdots=I\left(1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\cdots\right) \\
& =e^{t} \cdot I \\
& e^{I t}=e^{t} I
\end{aligned}
$$

So $e^{2 I t}=e^{2 t} \cdot I$

$$
\begin{aligned}
e^{B t} & =I+B t+\frac{B^{2} t^{2}}{2!}+\cdots \\
& =I+B t=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
0 & 5 t \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 5 t \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
e^{A t} & =e^{2 I t} \cdot e^{B t} \\
& =\left(e^{2 t} \cdot I\right)(I+B t) \\
& =e^{2 t}(I+B t) \\
e^{A t} & =e^{2 t}\left[\begin{array}{cc}
1 & 5 t \\
0 & 1
\end{array}\right] \\
\vec{x}(t) & =e^{A t} \overrightarrow{x_{0}} \\
& =e^{2 t}\left[\begin{array}{cc}
1 & 5 t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
7
\end{array}\right] \\
& =e^{2 t}\left[\begin{array}{c}
4+35 t \\
7
\end{array}\right] \\
{\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
e^{2 t}(4+35 t) \\
7 e^{2 t}
\end{array}\right]
\end{aligned}
$$

