5.6 Matrix Exponentials and Linear Systems

Fundamental Matrix Solutions
The solution vectors of an n X n homogeneous linear system
x' = Ax (1)
can be used to construct a square matrix X = ®(¢) that satisfies the matrix differential equation
X' = AX.
Then the n X n matrix

| | |
®(t) = |x1(t) xa2(t) -+ xu(t)],
| | |

having these solution vectors as its column vectors, is called a fundamental matrix for the system in (1).

Example 1 Compute the fundamental matrix for the system
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We have A = L)) _1] with
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eigenvalues Ay = —2 and Ay = 5 and eigenvectors Vi = l_?’] and v = ll}

Thus we have two linearly independent solutions
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Theorem 1. Fundamental Matrix Solutions

Let ®(t) be a fundamental matrix for the homogeneous linear system x’ = Ax. Then the [unique] solution of

the initial value problem

x' = Ax, x(0) = xo (2)

is given by
x(t) = ®(t)®(0) 'x. (3)

In order to apply Eqg. (3), we must be able to compute the inverse matrix <I’(O)’1. The inverse of the

A=l

nonsingular 2 x 2 matrix

where A = det (A) = ad — be # 0.

Example 2 In Example 1, we have
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and ®(t) = l—3e‘2t it |
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Find a solution satisfying the initial condition xo = x(0) = l_ll :
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Exponential Matrices
How to construct a fundamental matrix for the system x’ = Ax directly from A ? (W,"{hgu‘(‘ §o/{/,kj {ay«
Recall that the solution of ' = az is z(t) = e®. e}i@nm/mj )
Since ((J/Od)/: 0L€a+
We now define exponentials of matrices in such a way that
X(t) = e
is a matrix solution of the matrix differential equation
X'= AX

with n x n coefficient matrix A, which is an analog to the z(t) = e® is a solution of the equation z’ = az.

How do we define e®? 2 3
2 2
— . 2 PR —_— +‘..
In calculus, we have }:(7 e = 142 1 2! T 3!
. 22 23 2"
e :1+Z+E+g+"'+m+"'

Similarly, we have the following definition.

Definition Exponential matrix
If Ais anm X m matrix, then the exponential matrix e® is the n X n matrix defined by the series

A2 A"
6A:I+A+_+'+_+.’ (4)

where I is the identity matrix.

IfAB = BA, then eAtB — ¢AeB



Matrix Exponential Solutions

Theorem 2 Matrix Exponential Solutions Tobo O’IL"“AQ I)ma/j

If A is an n X m matrix, then the solution of the initial value problem ) eA_t / At
x' = Ax, x(0) = xo ét ) - A e
is given by e Scj-/m"m&
x(t) zgfxo, X = AX

@M= g
-1

and this solution is unique. 2600” T}lmj ;‘( ()= @H) @_EO) —7<>o

If we already know a fundamental matrix ®(t) for the linear system x’ = Ax, then
el = ®(1)@(0) .

Example 3 Compute the matrix exponential et for the system x’ = Ax given in the problem.
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Remark If A" = 0 for some positive integer n, then the exponential series in (4) terminates after a finite
number of terms. Such a matrix—with a vanishing power—is said to be nilpotent.

Example 4 Show that the matrix A is nilpotent and then use this fact to find the matrix exponential eht.
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Example 5 The coefficient matrix A in the following problem is the sum of a nilpotent matrix and a multiple of
the identity matrix. Use this fact to solve the given initial value problem
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