
5.6 Matrix Exponentials and Linear Systems  

Fundamental Matrix Solutions

The solution vectors of an  homogeneous linear system

can be used to construct a square matrix  that satisfies the matrix differential equation

Then the  matrix 

having these solution vectors as its column vectors, is called a fundamental matrix for the system in (1).

Example 1 Compute the fundamental matrix for the system

We have  with 

eigenvalues  and  and eigenvectors   and .

Thus we have two linearly independent solutions

 

 

 

 

 

 

 

 

The fundamental matrix for the system is
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Theorem 1.  Fundamental Matrix Solutions

Let  be a fundamental matrix for the homogeneous linear system . Then the [unique] solution of 
the initial value problem

is given by

In order to apply Eq. (3), we must be able to compute the inverse matrix . The inverse of the 
nonsingular  matrix

is

where  

 

Example 2   In Example 1, we have 

and .  

Find a solution satisfying the initial condition .

 

 

 

 

 

 

 

 

ANS : By -1hm 1 . we have
A. = 1

Ittf # It)④Ñxo b = 2

☒ to)= (
e
-20 20° c. =-3

→e
" es

:O / = 't 's 11=1:&) ⇐ ,

☒ñi -- aol.ba/II1--HoI-:t-5:?)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* it ) = ¥1T ] Iiis Io
est ÷:* :X:D= 'T [zest

zest
= ; [

e-
at

-3é
"

est /
= f- [

3 e-
*
+4 est

- qé
"

+ zest ]
(
X , Itt

✗ < it ,/ =/
%
"
+ § est

- f- e-
it
+ fest ]



Exponential Matrices  

How to construct a fundamental matrix for the system  directly from  ?

Recall that the solution of  is .

 

We now define exponentials of matrices in such a way that

is a matrix solution of the matrix differential equation

with  coefficient matrix , which is an analog to the  is a solution of the equation .

How do we define ?

In calculus, we have

Similarly, we have the following definition.

Definition   Exponential matrix

If A is an  matrix, then the exponential matrix  is the  matrix defined by the series

where  is the identity matrix. 

If , then 

 

 

 

 

 

 

 

 

 

(without solving for
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Matrix Exponential Solutions

Theorem 2   Matrix Exponential Solutions

If  is an  matrix, then the solution of the initial value problem 

is given by 

and this solution is unique.

 

If we already know a fundamental matrix  for the linear system , then 

Example 3  Compute the matrix exponential  for the system  given in the problem.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Idea of the proof :
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Remark If  for some positive integer , then the exponential series in (4) terminates after a finite 
number of terms. Such a matrix—with a vanishing power—is said to be nilpotent.

Example 4 Show that the matrix  is nilpotent and then use this fact to find the matrix exponential .
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Example 5 The coefficient matrix  in the following problem is the sum of a nilpotent matrix and a multiple of 
the identity matrix. Use this fact  to solve the given initial value problem.
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